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Computational Mathematics & Machine (Deep) Learning
中心负责人
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DL Math

The relationship between 
math and DL  
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Deep learning for solving PDEs
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Motivation: Many physical laws can be expressed in the form of partial 

differential equations (PDEs).

DL for PDEs: For challenging problems governed by PDEs, deep 

learning based AI solutions are becoming an attractive alternative.

袁晓如

Application fields: acoustics, molecular dynamics, 
electromagnetics, fluid mechanics, etc. 
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Potential advantages of DL for PDEs
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Dam Aircraft

AtmosphericOcean

Mesh-based

vs

Meshfree

classical numerical methods DL for PDEs

 High dimensional
 Naturally meshfree
 Intrinsically nonlinear
 surrogate modeling 
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Physics-based DL model
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Meshfree
 High dimensional
 Naturally meshfree
 Intrinsically nonlinear

Example:   
1D Burgers
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Surrogate modeling - Operator learning
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operator: function to function
fast solver for parametric PDEs 
and Bayesian inverse problems 

Lu, Lu, et al., Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators,  Nature machine 
intelligence 3.3 (2021): 218-229.
Li, Zongyi, et al., Fourier neural operator for parametric partial differential equations,  arXiv preprint arXiv:2010.08895 (2020).

different s(x), different solutions 
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Physics discovery based on DL

Given some snapshots (say data produced by some PDEs), can we discover the physics model?
Chen, Zhao, Yang Liu, and Hao Sun, Physics-informed learning of governing equations from scarce data, Nature communications 12.1 
(2021): 6136.
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DL for PDEs

This talk: focus on adaptive sampling, 

and surrogate modeling (for parametric 

optimal control)
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The overall  process
中心负责人

袁晓如

11

, e.g., Laplacian 

, e.g., Dirichlet boundary 

, e.g., [-1,1] 

, e.g., {-1,1} 

draw training samples

construct NN

compute loss and train
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The construction of NN
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, e.g., Laplacian 

, e.g., Dirichlet boundary 

, e.g., [-1,1] 

, e.g., {-1,1} 

fully connected 
NN, mesh free

CNN based model if using structure mesh
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The sampling step 

• Uniform sampling

• Random sampling

• Importance sampling

• Quasi random sampling

• Deep adaptive sampling (DAS)[1]

Sampling Methods

The framework of DAS

Case: Two-dimensional peak problem 

Exact solution DAS Uniform sampling

 K. Tang, X. Wan and C. Yang, DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations, 
Journal of Computational Physics, vol: 476, 2023.
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The optimization step 

• Adam (popular)

• RMSProp

• Vanilla SGD

• (L) BFGS

Optimization Methods

first order method

second order method

Key to PDE 
constrained 

optimal control 
problem, shape 

optimazation 
problem

 High dimensional
 Fast
 Rough 
 

first order methods:

 Low dimensional
 Cost
 Accurate 
 

second order methods:

P. Yin, G Xiao, K. Tang, and C. Yang,  AONN: An adjoint-oriented neural network method for all-at-once solutions of 
parametric optimal control problems, SIAM Journal on Scientific Computing, accepted, 2023.
X. Wang*, P. Yin*, B. Zhang, and C. Yang, AONN-2: An adjoint-oriented neural network method for PDE-constrained 
shape optimization, submitted, 2023 

AONN for parametric 
optimal contorl 
problems

AONN-2 for 
shape 
optimization
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Software Architecture with Modular Design

Problem-level

Data-level

Training-level

adaptive sampling

NN structures 
& applications 
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Different forms

 Original (classical) form of PDEs

 Weak (variational) form of PDEs

 Ritz

 Galerkin

 Length factor: Penalty-free

PINN                            least square FEM

Constraints

Deep Ritz                         Ritz method   

Not all PDEs have a Ritz form.  

             PFNN                Weak form with penalty free    

Example

PINN

Deep Ritz

PFNN
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Convert PDE to an optimization problem

use steady-state equations to illustrate the idea

The penalty term brings the difficulty
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Penalty free methods

for essential boundary conditions
can be pretrained

for the other parts
The structure of penalty free methods

independent

H. Sheng, C. Yang, PFNN: A penalty-free neural network method for solving a class of second order boundary-value problems on complex geometries, J. Comput. Phys. 428 
(2021) 110085.



20

Penalty free methods

Two neural networks instead of one

          can also be the distance function 
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Penalty free methods

Plugging into the above loss function 
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Penalty free methods: results

p-Liouville-Bratu equation 
on the Stanford Bunny

Minimal surface equation 
on a Koch snowflake
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Convert PDE to an optimization problem

use steady-state equations to illustrate the idea
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Look at errors



25

The role of samples

Question
Question: if the support of the 
solution is concentrate on the origin, 
what will happen?  



26

Some observations
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Localization property

choosing uniform samples is not efficient for low 
reglularity problems 
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Reduce the statistical errors
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Reduce the statistical errors



30

A deep generative model for sampling
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A deep generative model for sampling
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Algorithm of DAS
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Analysis of DAS
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Some results of DAS

The evolution of samples The comparison of different sampling strategies
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A special case: Fokker-Planck equations 
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A min-max formulation
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Optimal transport 
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A reglularization term
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A reglularization term
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Theoretical results

K. Tang,* J. Zhai*, X. Wan and C. Yang, Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of 
PDEs preprint, 2023.
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The framework of adversarial adaptive sampling
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Implementation of AAS
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Results of AAS

Two peak problem

High-dimensional 
nonlinear problem
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AONN (adjoint-oriented neural network)
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AONN (adjoint-oriented neural network)
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AONN (adjoint-oriented neural network)

• Parameter space discretization.

• Inter-parameter dependence.

• Essentially high-dimensional.

Parameter-dependent challenges

μ-dependent solutions form a manifold

 The AONN methods can efficiently deal with a series of challenging PDE-constrained optimization 

problems.



47

AONN for solving parametric optimal control problems

 P a r a m e t r i c  o p t i m a l 
control problem：

(A) Input parameters.     (B) Neural networks.    (C) Loss functions.    (D) Optimizer.

 T h e  p a r a m e t e r  µ  c o u l d 
involve: 

P. Yin, G. Xiao, K. Tang, C. Yang, AONN: An adjoint-oriented neural network method for all-at-once solutions of parametric optimal control problems, preprint.
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AONN for solving parametric optimal control problems
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AONN for solving parametric optimal control problems
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AONN for solving parametric optimal control problems
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AONN for solving parametric optimal control problems
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Optimal control with geometrical parametrization

Comparison with FEM

Solutions for different μ

 All-at-once solutions 
 Fast evaluation
 High accuracy
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Optimal control with sparsity parametrization 

FEM solutions for fixed sparsity

Solutions with continuously changing sparsity

 We seek the optimal sparse control �(β) with 

parameter β controls the sparsity of �. 

 The objective functional:

 β ∈ [0,  0.128]

 β=0.000

 β=0.004

 β=0.032  β=0.064  β=0.128

 β=0.016 β=0.008

 β=0.001  β=0.002



Thank you for your attention!

Kejun Tang 
Email: tangkejun@icode.pku.edu.cn

DL for computational mathematics, and 
computational mathematics for DL !


