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Problem Setting

The PDE problem considered here is: find u ∈ F :Ò 7→� whereF
is a proper function space defined on a computational domainÒ ∈�D ,
such that

Lu(x) = s(x), ∀x ∈Ò
bu(x) = g(x), ∀x ∈ �Ò,

(1)

L : partial differential operator (e.g., the Laplace operatorÉ)
b: boundary operator (e.g., the Dirichlet boundary)
The idea of PINN [2]: NN uθ→ u . The parameters θ are determined
by minimizing the following loss functional

J (uθ) = Jr(uθ) +ÕJb(uθ) with

Jr(uθ) =
∫
Ò

|r(x ;θ)|2dx and Jb(uθ) =
∫
�Ò
|b (x ;θ)|2dx , (2)

where r(x ;θ) = Luθ(x)− s(x), and b (x ;θ) = buθ(x)−g(x) are the
residuals that measure how well uθ satisfies the partial differential
equations and the boundary conditions, respectively, and Õ > 0 is a
penalty parameter to leverage the convergence of the two parts.

Statistical Errors in Neural
Network Approximation

Let SÒ = {x(i )
Ò
}Nr
i=1 and S�Ò = {x(i )�Ò}

Nb
i=1 be two sets of uniformly

distributed collocation points onÒ and �Ò respectively. We then
minimize the following empirical loss in practice

JN (uθ) =
1
Nr

Nr¼
i=1

r2(x(i )
Ò
;θ) +Õ

1
Nb

Nb¼
i=1

b2(x(i )�Ò;θ), (3)

Monte Carlo (MC) approximation of J (uθ) subject to a statistical error
ofO (N−1/2)withN being the sample size. Let uθ∗N be the minimizer of
the empirical loss JN (uθ) and uθ∗ be the minimizer of the original loss
functional J (uθ). Without taking into the optimization error,

�

(∥∥∥uθ∗N −u∥∥∥Ò) ≤ �

(∥∥∥uθ∗N −uθ∗∥∥∥Ò)+ ‖uθ∗ −u‖Ò , (4)

Main Idea

Smaller variance of the Monte Carlo integration for r2
→ Improved accuracy of theMC approximation(with fixed sample size)
→More accurate solution of PDEs

Methodology

pα: sampler (a flow-based deep generative model),
uθ: approximator (a fully connected neural network).
A minmax formulation

min
θ

max
pα∈V

J(uθ,pα) =
∫
Ò

r2(x ;θ)pα(x)dx +ÕJb(uθ), (5)

V : a function space that defines a proper constraint on pα(x)

V = {p(x)|‖p‖Lip ≤ 1, p(x) ≥ 0,
∫
Ò

p(x)dx = 1},

A practical implementation

min
θ

max
pα>0,∫

Ò
pα(x)dx=1

J(uθ,pα) =
∫
Ò

r2(x ;θ)pα(x)dx−Ô
∫
Ò

|∇xpα(x)|2dx ,

(6)
Ô: a hyperparameter to be tuned

Main Theorem

Let Þ be the Lebesgue measure on�D , which represents the uniform
probability distribution onÒ. Then the optimal value of the min-max
problem (5) is 0. Moreover, there is a sequence {un}∞n=1 of functions
with r(un) , 0 for all n , such that it is an optimization sequence of (5),

lim
n→∞

J(un,pn) = 0,

for some sequence of functions {pn}∞n=1 satisfying the constraints in (5).
Meanwhile, this optimization sequence has the following properties:
1. The residual sequence {r(un)}∞n=1 of {un}

∞
n=1 converges to 0 in

L2(dÞ).
2. The renormalized squared residual distributions

dßn ,
r2(un)∫

Ò
r2(un(x))dx

dÞ(x)

converge to the uniform distribution Þ in the Wasserstein distance
dWM .

Results
Method one peak two peaks high dimensional problem
PINN 9.74e-04 3.22e-02 1.01

RAR [1] - - 9.83e-01
DAS-G [3] 3.75e-04 1.51e-03 9.55e-03
DAS-R [3] 1.93e-04 6.21e-03 1.26e-02

AAS (this work) 2.97e-05 1.09e-04 1.31e-03
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