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Problem Setting

The PDE problem considered here is: find u € & : 2 — R where &

is a proper function space defined on a computational domain {2 € RP.

such that
Lu(x) = s(x),
bu(x) = g(x),

Vx e
Vx € df2, (1)

L: partial differential operator (e.g., the Laplace operator A)
b: boundary operator (e.g., the Dirichlet boundary)
The idea of PINN [2]: NN ug — u. The parameters 0 are determined

by minimizing the following loss functional

J (ug) = Jr(up)

Jr(Ue) — JQ lr(X}e)lZdX and Jb(UQ) — LQ lb(X}Q)lZdX, (2)

where r(x;0) = Lug(x) — s(x), and b(x;0) = bug(x) — g(x) are the
residuals that measure how well ug satisfies the partial differential
equations and the boundary conditions, respectively, and > O is a

VJb(UQ) with

penalty parameter to leverage the convergence of the two parts.

Statistical Errors in Neural
Network Approximation

Let S = {x(fi))}firl and Sy = {xgg}fibl be two sets of uniformly

distributed collocation points on {2 and Y. respectively. We then
minimize the following empirical loss in practice

N A
1 i 1 i
JIn (ug) = NZFZ(X(Q);Q) | be sz(xggz;e), (3)
Fi=1 i=1

Monte Carlo (MC) approximation of J(ug) subject to a statistical error
of O(N~Y/2) with N being the sample size. Let ug: be the minimizer of

the empirical loss Jy(ug) and ug+ be the minimizer of the original loss
functional J(ug). Without taking into the optimization error,

E(HUQT\I—Ul Q)S E(HUQT\I—UQ* Q)-I—HUQ*—UHQ, (4)
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Main Idea

Smaller variance of the Monte Carlo integration for e

— Improved accuracy of the MC approximation(with fixed sample size)
— More accurate solution of PDEs

r?(x; 0) to uniform >

{z®}™ . to nonuniform >

Methodology

Pg: sampler (a flow-based deep generative model),
ug: approximator (a fully connected neural network).
A minmax formulation

minmax H(u,pa) = | rxi0)palx)dx + 7(uo), ()
Pac€V @,

V: a function space that defines a proper constraint on p,(x)

V ={px)lllpllLip < 1, p(x) = 0, L p(x)dx =1},

A practical implementation

F(ug, Pa) = J;) r2(x;6)pa(x)dx—[j’ J;) lvxpa(X)lZdX,

min max
6 py>0,

JQ Pa(x)dx=1
(6)

f3: a hyperparameter to be tuned
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Main Theorem

Let p be the Lebesgue measure on RP. which represents the uniform
probability distribution on 2. Then the optimal value of the min-max
problem (5) is 0. Moreover, there is a sequence {u,}>_; of functions
with r(u,) # O for all n, such that it is an optimization sequence of (5),

lim ?(un’ pn) =0,

n—00
° Oo . . ° .
for some sequence of functions {p,}>._, satisfying the constraints in (5).
Meanwhile, this optimization sequence has the following properties:

0. @)

1. The residual sequence {r(up)}>; of {un}> 4

| 2 (du).
2. The renormalized squared residual distributions
2
dv, £ —— in) dp(x)
fQ r<(un(x))dx

converge to the uniform distribution u in the Wasserstein distance

converges to O in

d wM.
Results
Method one peak two peaks high dimensional problem
PINN 9.74e-04 3.22e-02 1.01
RAR [1] - : 9.83¢-01
DAS-G[3]  3.75¢-04 1.51¢-03 9.55¢-03
DASR [3]  1.93¢-04 6.21¢-03 1.26¢-02
AAS (this work) 2.97¢-05 1.09¢-04 1.31¢-03
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