

Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs Kejun Tang*, Jiayu Zhai*, Xiaoliang Wan, Chao Yang *Co-first Author Problem Setting Main Idea Main Theorem

The PDE problem considered here is: find $u \in \mathscr{F} : \Omega \mapsto \mathbb{R}$ where \mathscr{F} is a proper function space defined on a computational domain $\Omega \in \mathbb{R}^D$, such that

$$\mathcal{L}u(x) = s(x), \quad \forall x \in \Omega$$

 $\mathfrak{b}u(x) = g(x), \quad \forall x \in \partial\Omega,$

 \mathcal{L} : partial differential operator (e.g., the Laplace operator Δ) b: boundary operator (e.g., the Dirichlet boundary) The idea of PINN [2]: NN $u_{\theta} \rightarrow u$. The parameters θ are determined by minimizing the following loss functional

$$J(u_{\theta}) = J_{r}(u_{\theta}) + \gamma J_{b}(u_{\theta}) \quad \text{with}$$
$$J_{r}(u_{\theta}) = \int_{\Omega} |r(x;\theta)|^{2} dx \text{ and } J_{b}(u_{\theta}) = \int_{\partial\Omega} |b(x;\theta)|^{2} dx \text{ and } J_{b}(u_{\theta}) = \int_{\partial$$

where $r(x; \theta) = \mathcal{L}u_{\theta}(x) - s(x)$, and $b(x; \theta) = \mathfrak{b}u_{\theta}(x) - g(x)$ are the residuals that measure how well u_{θ} satisfies the partial differential equations and the boundary conditions, respectively, and $\gamma > 0$ is a penalty parameter to leverage the convergence of the two parts.

Statistical Errors in Neural Network Approximation

Let $S_{\Omega} = \{x_{\Omega}^{(i)}\}_{i=1}^{N_r}$ and $S_{\partial\Omega} = \{x_{\partial\Omega}^{(i)}\}_{i=1}^{N_b}$ be two sets of uniformly distributed collocation points on $\hat{\Omega}$ and $\partial \Omega$ respectively. We then minimize the following empirical loss in practice

$$J_N(u_{\theta}) = \frac{1}{N_r} \sum_{i=1}^{N_r} r^2(\boldsymbol{x}_{\Omega}^{(i)}; \boldsymbol{\theta}) + \gamma \frac{1}{N_b} \sum_{i=1}^{N_b} b^2(\boldsymbol{x}_{\partial\Omega}^{(i)}; \boldsymbol{\theta}), \qquad (3)$$

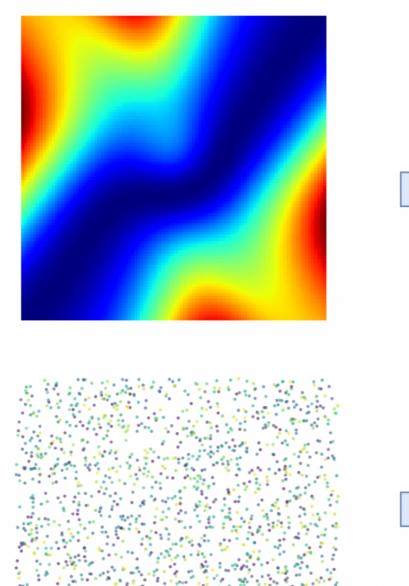
Monte Carlo (MC) approximation of $J(u_{\theta})$ subject to a statistical error of $O(N^{-1/2})$ with N being the sample size. Let $u_{\theta_N^*}$ be the minimizer of the empirical loss $J_N(u_{\theta})$ and u_{θ^*} be the minimizer of the original loss functional $J(u_{\theta})$. Without taking into the optimization error,

$$\mathbb{E}\left(\left\|u_{\theta_{N}^{*}}-u\right\|_{\Omega}\right) \leq \mathbb{E}\left(\left\|u_{\theta_{N}^{*}}-u_{\theta^{*}}\right\|_{\Omega}\right) + \left\|u_{\theta^{*}}-u\right\|_{\Omega}, \qquad (4)$$

(1)

 $;\theta)|^2 dx,$

Smaller variance of the Monte Carlo integration for r^2 \rightarrow Improved accuracy of the MC approximation(with fixed sample size) \rightarrow More accurate solution of PDEs



 $r^2(oldsymbol{x};oldsymbol{ heta}) ext{ to uniform}$

 $\{oldsymbol{x^{(i)}}\}_{i=1}^m$ to nonuniform

Methodology

 p_{α} : sampler (a flow-based deep generative model), u_{θ} : approximator (a fully connected neural network). A minmax formulation

$$\min_{\theta} \max_{p_{\alpha} \in V} \mathcal{F}(u_{\theta}, p_{\alpha}) = \int_{\Omega} r^2(x; \theta) p_{\alpha}(x) dx + \gamma J_b(u_{\theta}), \quad (5)$$

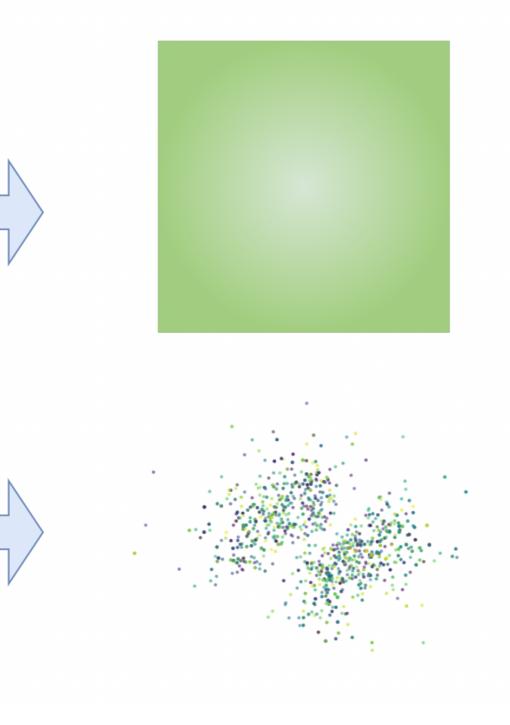
V: a function space that defines a proper constraint on $p_{\alpha}(x)$

$$V = \{p(x) |||p||_{Lip} \le 1, p(x) \ge 0, \int_{\Omega} p(x) dx = 1\},$$

A practical implementation

$$\min_{\theta} \max_{\substack{p_{\alpha} > 0, \\ \int_{\Omega} p_{\alpha}(x) dx = 1}} \mathcal{J}(u_{\theta}, p_{\alpha}) = \int_{\Omega} r^{2}(x; \theta) p_{\alpha}(x) dx - \beta \int_{\Omega} |\nabla_{x} p_{\alpha}(x)|^{2} dx,$$
(6)

 β : a hyperparameter to be tuned



Let μ be the Lebesgue measure on \mathbb{R}^D , which represents the uniform probability distribution on Ω . Then the optimal value of the min-max problem (5) is 0. Moreover, there is a sequence $\{u_n\}_{n=1}^{\infty}$ of functions with $r(u_n) \neq 0$ for all *n*, such that it is an optimization sequence of (5), $\lim_{n\to\infty}\mathcal{F}(u_n,p_n)=0,$

- $L^2(d\mu).$
- 2. The renormalized squared residual distributions

converge to the uniform distribution μ in the Wasserstein distance *d*_Wм.

Method	one pe
PINN	9.74e-(
RAR [1]	-
DAS-G [3]	3.75e-(
DAS-R [3]	1.93e-(
AAS (this work)	2.97e-0

- pp. 208-228.
- of Computational Physics 378 (2019), pp. 686–707.

The Twelfth International Conference on Learning Representations (ICLR 2024)

for some sequence of functions $\{p_n\}_{n=1}^{\infty}$ satisfying the constraints in (5). Meanwhile, this optimization sequence has the following properties:

1. The residual sequence $\{r(u_n)\}_{n=1}^{\infty}$ of $\{u_n\}_{n=1}^{\infty}$ converges to 0 in

 $d\nu_n \triangleq \frac{r^2(u_n)}{\int_{\Omega} r^2(u_n(x)) dx} d\mu(x)$

Results

eak two peaks high dimensional problem 04 3.22e-02 1.01 9.83e-01 04 1.51e-03 9.55e-03 04 6.21e-03 1.26e-02 05 1.09e-04 1.31e-03

References

Lu Lu et al. "DeepXDE: A deep learning library for solving differential equations". In: SIAM Review 63.1 (2021),

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". In: Journal

Kejun Tang, Xiaoliang Wan, and Chao Yang. "DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations". In: Journal of Computational Physics 476 (2023), p. 111868.

