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Big data era: data-driven

Data Model

Implementation

@ Model: deep neural networks, physical models, or coupling ...
@ Data: labeled, unlabled, random samples

@ Algorithm: various optimization methods
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Big data era: data-driven

Data Model

Implementation

data is oil
- model is driven by data

- data has the influence on generalization
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-
Deep learning for PDEs

L(xu(x))=s(x) VxeQ,
b(x; u(x)) = g(x) Vx € 0f.

L : partial differential operator, b : boundary operator.

FEM: Deep methods:
1. mesh 1. samples
2. basis 2. neural networks

Why deep methods
- fast inference

- tackle high dimensional problems
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Deep learning for PDEs

L(x u(x)) = s(x) V(x) € Q,
b(x; u(x)) = g(x) Y (x) € 09Q.

L : partial differential operator, b : boundary operator.

How deep methods do: a deep nets u(x; ©) — u(x)

T (u(x;©)) = [|r(x; ©) 2.0 + 7 | 6(x: ©) 13,00
where r(x; ©) = Lu(x; ©) — s(x), b(x; ©) = bu(x; ©) — g(x), and

I @) = /Q P(x; ©)dx

An optimization problem: mein J (u(x; ©))
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-
Deep learning for PDEs

L(x; u(x)) = s(x) V(x,) € Q,
b(x;u(x))=gx) Y (x,) € 09.

L : partial differential operator, b : boundary operator.

How deep methods do: a deep nets u(x; ©) — u(x)

In (u(x; ©)) =N 2,2 N ZbZ(xa

xg) drawn from Q and ngz drawn from 902

v

Key point: mG;n J (u(x;©)) — mgn JIn (u(x; ©)) discretize loss by uniform

sampling or other quasi-random methods based on uniform samples
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-
Deep learning for PDEs

u(x; ©%) = arg mei)n J(u(x; ©)),
u(x; Oy) = arg mG;n In(u(x; ©)).

E ([lu(x; ©n) — u(x)llq) < E(|u(x, Oy) — u(x;©7)llg) + |lu(x; ©%) — u(x)lg
statistical error approxim;ion error

Our work: focus on how to reduce the statistical error

the capability of neural networks — approximation error
the strategy of loss discretization — statistical error

Key point: how to sample?
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Geometric properties of high-dimensional spaces
uniformly distributed points in high-dimensional spaces

Ad)2
-

<

Most of the volume of a high-dimensional cube is located around its corner
[Vershynin, High-Dimensional Probability, 2020]. Cube: [-1,1]¢

P([[x[|3 < 1) < exp(—=2).
10
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-
Adaptivity

Question: is uniform sampling optimal for deep methods?

FEM Adaptive FEM

o=

mesh refine mesh in a certain type of adaptivity

Observation:
1. uniform mesh is not optimal for FEM

2. choosing uniform samples is not a good choice for high-dimensional
problems

Deep methods J

lack of adaptivity — develop adaptive schemes
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Related work of adaptive sampling

- RAR [Lu et. al, 2021]

MCMC [Gao & Wang, 2023]

DAS [Tang, Wan, and Yang, 2022]

Gaussian mixture models [Gao et.al, 2023; Jiao et. al, 2023]
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Goal

functional

- formulate two essential components, minimizing the residual and
seeking the optimal training set, into one min-max objective

=] & = E A
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Adversarial adaptive sampling

Estimate the residual

: Lo ),
/Qﬁ(x,e)dxwﬁr;‘?(xg,e),

key point
- reduce the variance of

- the profile of the residual needs to be nearly uniform

Two things

- minimize the residual:

- endeavor to maintain a smooth profile of the residual
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Adversarial adaptive sampling

Two things need to handle together
- minimize the residual: ming r(x; 0)

- how to maintain a smooth profile of the residual?

>

72(; 0) to uniform E
L ‘

{2®}7, to nonuniform [
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Adversarial adaptive sampling

A min-max formulation
- minimize the residual: ming r(x; 6)

- maintain a smooth profile of the residual

min max J (ug, pa) = / P(x; 0) pa(X)dx,
For simplicity, we remove the boundary residual term.
min max J (ug, p) = / A (x; 0) p(x)dx.
0 peVv Q

where
Pa(x) = pz(fa(x))|Vxfal.

is a flow model.

K. Tang AAS: Unify PINN and Optimal Transport October 14, 2023 14 /27



|
Adversarial adaptive sampling

How can this min-max formulation achieve our goal?
- Optimal transport theory

- Some constraints for V

Wasserstein distance

d = inf d d
wilpor) = o [ dulx.y) dr(x,y)

Typically,
V= {p(x)|llpllLip <1, 0 < p(x) < M},

where M is a positive number, or

V= {pWllplup < 1) > 0. [ p(x)ae= 1),
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Adversarial adaptive sampling

The min-max formulation

inf sup J(u, p) = //’2

u pe/

The constraint for p is important.
Otherwise, the maximization step will yield a delta measure

d(x—xp) = arg MAX,50, [ pdx=1 / r2 0) p(x)dx.

where xg = arg max,cqri(x; ).
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Adversarial adaptive sampling

How this maximization step push the residual-induced distribution to a
uniform one?

2?\3//9 A (x; 0)p(x)dx

:Isjg;\)//Q r2(x;¢9)p(x)dx—/Qr2(x;c9)dx/Qp(x)dx+/Qrz(x;ﬁ)dx/ﬂp(x)dx
S/Q?(X:H)dx (,5325 [/QP(X)dNr—/P(X)dMu] +IS)25/QP( )dX>

S(dW’V’(Mh Hu) + M) /Q I’2(X; 0) dx

by is a uniform distribution.
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Adversarial adaptive sampling
Main theoretical results

Theorem

Under certain conditions, limp_oo J(Un, pn) = 0, for some sequence of
functions {p,}°° ; satisfying the constraints defined in the min-max
formulation. Meanwhile, this optimization sequence has the following two
properties:

@ The residual sequence {r(un)}°°, of {u,}7°, converges to 0 in
L2(dp).
@ The renormalized squared residual distributions

A ’2(”17)
dvn Jo P(un(x)) dx dhu(x)

converge to the uniform distribution p in the Wasserstein distance
dwlvl.

v

K. Tang AAS: Unify PINN and Optimal Transport October 14, 2023 18/27



|
Adversarial adaptive sampling

How can we implement the min-max optimization problem?
- the minimization step is straightforward

- the maximization step is not trival because of the constraints

A formulation for practical implementation

min  max  J(ug, Pa) Z/QIZ(X; 9)Pa(x)dX—5/Q|pra(x)|2dX,

0 pa >O
Jo Pa(x)dx=1

This formulation makes that p is well-posed

26V2p* + (x;6) |Q| fQ 0)dx=0, xe€Q,
ap =0, xe€dq.
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Adversarial adaptive sampling
@ minimize the residual
1 & ,
/Q (] po(a = 307 (o)

@ maximization step

2 [u@(xa'?)] pa(xgb

1 1 N [ Vepa (X2
J(ug, pa) = — - -B =) —5
ZD D m e )

Training style is similar to WGAN

- simultaneously optimize the approximate solution and the random
samples
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______________________________
Numerical experiments
—Au(x) = s(x) inQ,
u(x) = g(x) on 09Q,

The reference solution is given by

u(x1, %) = exp (—1000[(>x1 — 0.5)% + (x2 — 0.5)%]),

10°

Variance
g
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(a) (b) (c)

Figure: The results for the peak test problem. (a) The error behaviour. (b) The
variance behavior. (c) The evolution of the training set.
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Numerical experiments
Two-peak problem

—V - [u(x)V(x)] + VZu(x) = s(x) in Q,
u(x) = g(x) on 09,

10
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Figure: The results for the two-peak test problem. (a) The exact solution. (b)
AAS approximation. (c) The error behavior.
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Numerical experiments
Two-peak problem
—V - [u(x)Vv(x)] + V2u(x) = s(x) in Q,
u(x) = g(x) on 99,

Variance

0.0 0.5 1.0 15 2.0 25
Iteration 1e5

Figure: The evolution of the residual variance and the training set for the
two-peak test problem. Left: The variance behavior. Right: The evolution of the
training set.
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Numerical experiments

—Au(x) + u(x) — ¥(x) = s(x), xinQ=][-1,1]°
u(x) = g(x), xon 0.

Error
Variance

2 3 0 1 2 3
Iteration 1es Iteration

(a) (b) (c)

Figure: The results of the ten-dimensional nonlinear test problem. (a) The error
behavior. (b) The variance behaviour. (c) The evolution of the training set,

x1 — xp plane (8 = 10).

K. Tang AAS: Unify PINN and Optimal Transport October 14, 2023 24 /27



Numerical experiments

Table: Error comparison of adaptive sampling methods

Test problem

Method One peak Two peak High dimensional
PINN 0.74e-04  3.22e-02 1.01
RAR [Lu et. al, 2021] - - 9.83e-01
DAS-G 3.75e-04  1.51e-03 9.55e-03
DAS-R 1.93e-04 6.21e-03 1.26e-02
AAS (this work) 2.97e-05 1.09e-04 1.31e-03
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-
Summary of AAS

summary

- the evolution of the training set can be investigated in terms of the
optimal transport theory

- a very general and flexible framework for the adaptive learning
strategy

outlook
- more robust sampling strategies

- realistic applications
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Thank you for your attention
Questions?
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