Deep adaptive sampling for surrogate modeling

PKU-Changsha Institute for Computing and Digital Economy

Kejun Tang

joint work with Xili Wang (PKU), Jiayu Zhai (ShanghaiTech), Xiaoliang Wan (LSU) and Chao Yang (PKU) July 18, 2024 SciCADE 2024

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Outline

- Background
- Parametric PDEs and surrogate modeling
- OAS for surrogates
- Output State Numerical results
- Summary and outlook

Background

- Uncertainty quantification
- Inverse design
- Digital twins
- Shape optimization
- Operator learning

Background

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Big data era: data-driven

- Model: deep neural networks, physical model, or coupling
- Data: labeled, unlabled, random samples
- Algorithm: various optimization methods

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Big data era: data-driven

data is oil

- model is driven by data
- data has the influence on generalization

K. Tang

Deep adaptive sampling for surrogates

July 18, 2024 6 / 30

3

Goal

Traditional numerical methods

- high fidelity
- suffers from the curse of dimensionality
- Machine (deep) learning approaches
 - low fidelity
 - weaker dependence on dimensionality

our purpose:

Develop adaptive sampling methods for neural network-based surrogates

Parametric PDEs

Parametric differential equations

$$\begin{aligned} \mathcal{L}\left(\mathbf{x},\xi;u\left(\mathbf{x},\xi\right)\right) &= s(\mathbf{x},\xi) \qquad \forall \left(\mathbf{x},\xi\right) \in \Omega_{s} \times \Omega_{p}, \\ \mathcal{B}\left(\mathbf{x},\xi;u\left(\mathbf{x},\xi\right)\right) &= g(\mathbf{x},\xi) \qquad \forall \left(\mathbf{x},\xi\right) \in \partial\Omega_{s} \times \Omega_{p}. \end{aligned}$$

For any ξ , compute the solution efficiently without solving the differential equation repeatedly.

- \mathcal{L} : differential operator; \mathcal{B} : boundary operator
- $\Omega_s \subset \mathbb{R}^n$: spatial domain with smooth boundary $\partial \Omega_s$
- $\mathbf{x} \in \Omega_s$: spatial variable
- $\Omega_p \subset \mathbb{R}^d$: parametric space
- $\xi \in \Omega_p$: parameters
- we denote $\Omega = \Omega_s \times \Omega_p$ and $\partial \Omega = \partial \Omega_s \times \Omega_p$ for simplicity

Physics-informed surrogate modeling

Why

- fast inference
- tackle high dimensional problems

How: a deep net $u(\mathbf{x}, \xi; \Theta) \rightarrow u(\mathbf{x}, \xi)$

$$J(u(\mathbf{x},\xi;\Theta)) = \|r(\mathbf{x},\xi;\Theta)\|_{2,\Omega}^2 + \gamma \|b(\mathbf{x},\xi;\Theta)\|_{2,\partial\Omega}^2,$$

$$\|r(\mathbf{x},\xi;\Theta)\|_{2,\Omega}^2 = \int_{\Omega} r^2(\mathbf{x},\xi;\Theta) d\mathbf{x} d\xi,$$

$$\|b(\mathbf{x},\xi;\Theta)\|^2_{2,\partial\Omega} = \int_{\partial\Omega} b^2(\mathbf{x},\xi;\Theta) d\mathbf{x} d\xi$$

An optimization problem: min $J(u(\mathbf{x}, \xi; \Theta))$

< □ > < □ > < □ > < □ > < □ > < □ >

Illustration of the error

Discretization of the loss

$$J_N(u(\mathbf{x},\xi;\Theta)) = \frac{1}{N_r} \sum_{i=1}^{N_r} r^2(\mathbf{x}_{\Omega}^{(i)},\xi^{(i)};\Theta) + \gamma \frac{1}{N_b} \sum_{i=1}^{N_b} b^2(\mathbf{x}_{\partial\Omega}^{(i)},\xi^{(i)};\Theta),$$

 $\mathbf{x}_{\Omega}^{(i)}$ drawn from Ω_s , $\mathbf{x}_{\partial\Omega}^{(i)}$ drawn from $\partial\Omega_s$, and $\xi^{(i)}$ drawn from Ω_p .

$$u(\mathbf{x},\xi;\Theta^*) = \arg\min_{\Theta} J(u(\mathbf{x},\xi;\Theta)),$$
$$u(\mathbf{x},\xi;\Theta^*_N) = \arg\min_{\Theta} J_N(u(\mathbf{x},\xi;\Theta)).$$
$$\mathbb{E}\left(\left\|u_{\Theta^*_N} - u\right\|_{\Omega}\right) \leq \underbrace{\mathbb{E}\left(\left\|u_{\Theta^*_N} - u_{\Theta^*}\right\|_{\Omega}\right)}_{\text{statistical error}} + \underbrace{\left\|u_{\Theta^*} - u\right\|_{\Omega}}_{\text{approximation error}}$$

A D N A B N A B N A B N

Illustration of the error

Where do the errors come from?

the capability of neural networks \rightarrow approximation error the strategy of loss discretization \rightarrow statistical error

In this work, we focus on how to reduce the statistical error

Difficulities

low regularities or high-dimensional

Key point: the strategy to discretize the loss. Uniform random sampling? Quasi-random sampling?

• • = • • =

Geometric properties of high-dimensional spaces uniformly distributed points in high-dimensional spaces

Most of the volume of a high-dimensional cube is located around its corner [Vershynin, High-Dimensional Probability, 2020]. Cube: $[-1, 1]^d$

$$\mathbb{P}(\|\mathbf{x}\|_2^2 \le 1) \le \exp(-\frac{d}{10}).$$

Sampling strategy

PDF for sampler

$$p(\mathbf{x},\xi) = p(\mathbf{x}|\xi)p(\xi)$$
 or $p(\mathbf{x},\xi) = p(\xi|\mathbf{x})p(\mathbf{x})$

In practice, the above two PDF models can be further simplified.

- Sample from a joint PDF

$$p(\mathbf{x},\xi) = \hat{r}(\mathbf{x},\xi) \propto r^2(\mathbf{x},\xi;\theta)h(\mathbf{x},\xi),$$
$$p_{\mathbf{x},\xi}(\mathbf{x},\xi;\theta_f) = p_{\mathbf{z}|\xi}(f_{\mathsf{KRnet}}(\mathbf{x},\xi;\theta_f)) |\det \nabla_{\mathbf{x}} f_{\mathsf{KRnet}}|.$$

- Sample from a marginal PDF

$$p(\xi) = \tilde{r}^2(\xi; \theta) = \int_{\Omega_s} r^2(\mathbf{x}, \xi; \theta) d\mathbf{x},$$

 $p_{\xi}(\xi; \theta_{f}) = p_{z}(f_{\mathsf{KRnet}}(\xi; \theta_{f})) \left| \mathsf{det} \nabla_{\xi} f_{\mathsf{KRnet}} \right|.$

< □ > < □ > < □ > < □ > < □ > < □ >

Deep adaptive sampling for surrogates (DAS²) A viewpoint of variance reduction (both x and ξ)

$$J_r(u(\mathbf{x},\xi;\Theta)) = \int_{\Omega} \frac{r^2(\mathbf{x},\xi;\Theta)}{p(\mathbf{x},\xi)} p(\mathbf{x},\xi) d\mathbf{x} d\xi \approx \frac{1}{N_r} \sum_{i=1}^{N_r} \frac{r^2(\mathbf{x}_{\Omega}^{(i)},\xi^{(i)};\Theta)}{p(\mathbf{x}_{\Omega}^{(i)},\xi^{(i)})},$$

where $\{\mathbf{x}_{\Omega}^{(i)}, \xi^{(i)}\}_{i=1}^{N_r}$ from $p(\mathbf{x}, \xi)$ instead of a uniform distribution.

A viewpoint of variance reduction (only ξ)

$$J_r(u(\mathbf{x},\xi;\Theta)) = \int_{\Omega_p} \frac{\tilde{r}^2(\xi;\Theta)}{p(\xi)} p(\xi) d\xi \approx \frac{1}{N_{\tilde{r}}} \sum_{i=1}^{N_{\tilde{r}}} \frac{\tilde{r}^2(\xi^{(i)};\Theta)}{p(\xi^{(i)})},$$

where $\tilde{r}^2(\xi; \Theta) \approx \frac{1}{m_{\mathbf{x}}} \sum_{i=1}^{m_{\mathbf{x}}} r^2(\mathbf{x}^{(i)}, \xi; \Theta), \ \{\mathbf{x}^{(i)}\}_{i=1}^{m_{\mathbf{x}}}$ in the spatial domain, $\{\xi^{(i)}\}_{i=1}^{N_{\tilde{r}}}$ from $p(\xi)$.

Deep adaptive sampling for surrogates (DAS²) Importance sampling

$$p^*=r^2(\mathbf{x},\xi;\Theta)/\mu$$
, $\mu=\int_{\Omega}r^2(\mathbf{x},\xi;\Theta)d\mathbf{x}d\xi$

Sample from $p(\mathbf{x}, \xi)$ for a fixed Θ : a deep generative model

$$p_{KRnet}(\mathbf{x},\xi;\Theta_f) \approx \mu^{-1} r^2(\mathbf{x},\xi;\Theta)$$

where $p_{KRnet}(\mathbf{x}, \xi; \Theta_f)$ is a PDF induced by KRnet [Tang, Wan and Liao, 2020]; [Tang, Wan and Liao, 2021]

"Error estimator": $\hat{r}(\mathbf{x},\xi) \propto r^2(\mathbf{x},\xi;\Theta)$

$$D_{KL}(\hat{r}(\mathbf{x},\xi) \| p_{KRnet}(\mathbf{x},\xi;\Theta_f)) = \int_B \hat{r} \log \hat{r} d\mathbf{x} d\xi - \int_B \hat{r} \log p_{KRnet} d\mathbf{x} d\xi.$$

$$\min_{\Theta_f} H(\hat{r}, p_{KRnet}) = -\int_B \hat{r} \log p_{KRnet} d\mathbf{x} d\xi.$$

Algorithm of DAS²

Deep adaptive sampling for surrogates

Analysis

Assumptions [T. De Ryck and S. Mishra, 2022]

- θ ∈ Θ = [-a, a]^D: trainable parameters of u_θ where a > 0 is a constant.
- $\mathcal{M}_1: \theta \mapsto J_{r,N}$ and $\mathcal{M}_2: \theta \mapsto J_r$: Lipschitz continuous in the ℓ_{∞} sense with Lipschitz constant \mathfrak{L} for $\theta \in \Theta$.
- Let c > 0 be a constant that is independent of Θ . Assume that $J_{r,N} \in [0, c]$ for all $\theta \in \Theta$.

Theorem (Wang, Tang, Zhai, Wan, and Yang, 2024)

Let θ_N^* be a minimizer of $J_{r,N}$ where the collocation points are independently drawn from a given probability distribution. Given $\varepsilon \in (0, 1)$, the following inequality holds under the above assumptions

$$J_r(u_{\theta_N^*}) \leq \varepsilon^2 + J_{r,N}(u_{\theta_N^*})$$

with probability at least $1 - (4a\mathfrak{L}/\epsilon^2)^D \exp(-N_r \epsilon^4/2c^2)$.

Numerical results: physics-informed operator learning

The following dynamical system

$$\int \frac{\mathsf{d}u(x,\xi)}{\mathsf{d}x} = e^{-D\|\boldsymbol{\xi}-\boldsymbol{0}.\boldsymbol{5}\|^2} f(x,\xi), \quad x \in [0,1],$$
$$u(0,\xi) = 0,$$

• D = 6: a fixed parameter

•
$$\xi \in \Omega_p = [-1, 1]^8$$

Goal: learn the sulution operator from f to the solution u without any paired input-output data

f is drawn from V_{poly} where

$$V_{\text{poly}} = \left\{ \sum_{i=0}^{d-1} \xi_i T_i(x) : |\xi_i| \le M \right\}.$$

Numerical results: physics-informed operator learning

$$u_{ heta}(x,\xi) pprox \sum_{i=1}^{l} q_{ heta_1}^{(i)}(x) t_{ heta_2}^{(i)}(\xi) + b_0,$$

marginal PDF for sampling

July 18, 2024 19 / 30

Numerical results: physics-informed operator learning The results and evolution of samples

	$ S_{\Omega_p} $	$2.5 imes 10^4$	5×10^4	$7.5 imes 10^4$	1×10^5
sampling strategy					
Uniform (0.006s)		5.4×10^{-4}	$3.5 imes 10^{-4}$	6.4×10^{-5}	5.5×10^{-5}
RAR (0.006s)		$3.6 imes10^{-4}$	$2.6 imes10^{-4}$	$8.5 imes 10^{-5}$	5.2×10^{-5}
DAS^{2} (0.03s)		$3.5 imes 10^{-5}$	$1.7 imes 10^{-5}$	4.9×10^{-6}	$3.0 imes 10^{-6}$

Deep adaptive sampling for surrogate

$$\begin{cases} \min_{y(\mathbf{x},\xi),u(\mathbf{x},\xi)} J(y(\mathbf{x},\xi), u(\mathbf{x},\xi)) = \frac{1}{2} \|y(\mathbf{x},\xi) - y_d(\mathbf{x},\xi)\|_{2,\Omega}^2 + \frac{\alpha}{2} \|u(\mathbf{x},\xi)\|_{2,\Omega}^2, \\ \text{subject to} \begin{cases} -\Delta y(\mathbf{x},\xi) = u(\mathbf{x},\xi) & \text{in } \Omega, \\ y(\mathbf{x},\xi) = 1 & \text{on } \partial\Omega, \\ \text{and} & u_a \le u(\mathbf{x},\xi) \le u_b & \text{a.e. in } \Omega, \end{cases} \end{cases}$$

where $\Omega_p = (\xi_1, \xi_2)$ is the paramter. $\Omega(\boldsymbol{\xi}) = ([0, 2] \times [0, 1]) \setminus B((1.5, 0.5), \xi_1)$ and the desired state is given by

$$y_d(\boldsymbol{\xi}) = \begin{cases} 1 & \text{ in } \Omega_1 = [0,1] \times [0,1], \\ \boldsymbol{\xi}_2 & \text{ in } \Omega_2(\boldsymbol{\xi}) = ([1,2] \times [0,1]) \backslash B((1.5,0.5), \boldsymbol{\xi}_1), \end{cases}$$

where $B((1.5, 0.5), \xi_1)$ is a ball of radius ξ_1 with center (1.5, 0.5), $\alpha = 0.001$ and $\boldsymbol{\xi} \in \Omega_p = [0.05, 0.45] \times [0.5, 2.5]$.

$$\begin{split} &l(\mathbf{x},\xi) = x_1(2-x_1)x_2(1-x_2)(\xi_1^2 - (x_1 - 1.5)^2 - (x_2 - 0.5)^2).\\ &u(\mathbf{x},\xi) \approx u_{\theta_u}(\mathbf{x},\xi), \ y(\mathbf{x},\xi) \approx l(\mathbf{x},\xi)y_{\theta_y}(\mathbf{x},\xi) + 1, \ p(\mathbf{x},\xi) \approx l(\mathbf{x},\xi)p_{\theta_p}(\mathbf{x},\xi)\\ &\Omega := \{(\mathbf{x},\xi) | 0 \le x_1 \le 2, 0 \le x_2 \le 1, 0.05 \le \xi_1 \le 0.45, 0.5 \le \xi_2 \le 2.5, \\ &(x_1 - 1.5)^2 + (x_2 - 0.5)^2 \ge \xi_1^2\}. \end{split}$$

joint PDF model for sampling

通 ト イ ヨ ト イ ヨ ト

top to bottom: $\xi = (0.10, 2.5) \ \xi = (0.20, 2.0) \ \xi = (0.30, 1.5) \ \xi = (0.40, 0.5).$

<mark>ট ▶ ব ≣ ▶ ≣ ৩ ৭ ৫</mark> July 18, 2024 23 / 30

A D N A B N A B N A B N

	$ S_{\Omega} $	$0.5 imes 10^4$	$1 imes 10^4$	1.5×10^4	$2 imes 10^4$
sampling strategy					
Uniform (0.1s)		0.92	0.67	0.49	0.29
QRS (0.1s)		0.66	0.63	0.36	0.20
RAR $(0.1s)$		0.95	0.77	0.37	0.15
$DAS^2 (0.1s)$		0.89	0.37	0.20	0.06

- $11\,\times\,11$ grid in the parametric space
- dolfin-adjoint solver for a fixed parameter
- dolfin-adjoint solver : 18804 seconds

$$\begin{aligned} \left(\mathbf{u}(\mathbf{x},\xi) \cdot \nabla \mathbf{u}(\mathbf{x},\xi) + \nabla p(\mathbf{x},\xi) &= \frac{1}{Re(\xi)} \Delta \mathbf{u}(\mathbf{x},\xi) & \text{in } \Omega, \\ \nabla \cdot \mathbf{u}(\mathbf{x},\xi) &= 0 & \text{in } \Omega, \\ \mathbf{u}(\mathbf{x},\xi) &= \mathbf{g}(\mathbf{x},\xi) & \text{on } \partial\Omega, \end{aligned} \end{aligned}$$

-
$$\mathbf{u}(\mathbf{x},\xi) = [u(\mathbf{x},\xi), v(\mathbf{x},\xi)]^{\mathsf{T}}, \mathbf{x} = [x, y]^{\mathsf{T}}$$

- $Re(\xi) = \xi \in \Omega_p = [100, 1000]$
- The physical domain is $\Omega_{\textit{s}} = [0,1] \times [0,1]$
- Boundary conditions

$$\mathbf{g}(\mathbf{x}, \xi) = \begin{cases} [1, 0]^{\mathsf{T}}, y = 1; \\ [0, 0]^{\mathsf{T}}, \text{ otherwise.} \end{cases}$$

Goal: obtaining all-at-once solutions for $Re \in [100, 1000]$

Figure: The velocity components at the location of mid-span lines for surrogate modeling of parametric lid-driven cavity flow problems ($Re \in [100, 1000]$). The results for Re = 100, 400, 1000 are chosen for visualization.

(b) 2d projection onto xy-plane

Deep adaptive sampling for surrogates

Figure: The visualization of $|\mathbf{u}| = \sqrt{u^2 + v^2}$ for surrogate modeling of parametric lid-driven cavity flow problems, $Re \in [100, 1000]$. The l_2 relative errors are 1.5%, 1.1%, 3.1%, 4.8% for Re = 100, 400, 700, 1000 respectively.

- Inference time of DAS^2 : 0.02 seconds,
- The computation time of FEniCS: 309.94 seconds

Summary and outlook

summary

- illustrate that DAS^2 is necessary for parametric PDEs
- significantly improve the accuracy for low-regularity problems especially for high-dimensional or parametric problems

outlook

- incoporate tensor networks into deep adaptive sampling
- large scale problems
- more applications

Thank you for your attention Q & A

K. Tang

Deep adaptive sampling for surrogates

July 18, 2024 30 / 30

A (1) > A (2) > A